Elastic constants of TiAl₃ and ZrAl₃ single crystals

MORIHIKO NAKAMURA*

National Research Institute for Metals, Tsukuba Laboratories, 1-2-1 Sengen, Tsukuba, Ibaraki 305, Japan

KAZUHIRO KIMURA

National Research Institute for Metals, 2-3-12 Nakameguro, Meguro, Tokyo 153, Japan

The elastic stiffness constants, c_{ij} , were measured from the velocity of ultrasonic waves for TiAl₃ and ZrAl₃ single crystals with tetragonal DO₂₂ and DO₂₃ structures, respectively. The value of c_{11} for the $\langle 100 \rangle$ direction was approximately equal to that of c_{33} for the $\langle 001 \rangle$ direction in both TiAl₃ and ZrAl₃. Young's modulus for a single crystal was the highest in the $\langle 110 \rangle$ direction in which titanium or zirconium atoms and aluminium atoms were arranged in the closest packed manner, although it was not so high in $\langle 012 \rangle$ and $\langle 014 \rangle$ directions which showed the other closest packed array of the constituent atoms for TiAl₃ and ZrAl₃, respectively. The elastic constants, such as Young's modulus, shear modulus and Poisson's ratio, were approximately estimated for ideal polycrystalline TiAl₃ and ZrAl₃ from the stiffness constants and the compliance constants for single crystals. The Poisson's ratio of these materials was about 0.16 and 0.19 for TiAl₃ and ZrAl₃, respectively, and these values are much lower than those of ordinary metals and alloys. Debye temperatures were estimated at room temperature from the average velocity of ultrasonic waves and were 681 and 577 K for TiAl₃ and ZrAl₃, respectively.

1. Introduction

TiAl₃ and ZrAl₃ are intermetallic compounds with tetragonal D022 and D023 structures, respectively, and they hardly have a composition range which includes an excess or a deficiency of titanium or zirconium [1]. Each compound has a tetragonal structure which approximately consists of two or four unit cells of fcc structure, and the average interatomic distance along the c-axis is a little larger than that along the a-axis (Fig. 1 [2]). The former has a low density of $3.4 \,\mathrm{g\,cm^{-3}}$ and a melting temperature of about 1623 K, and the latter has a density of 4.1 $g cm^{-3}$ and a melting temperature of about 1850 K [1, 2]. They contain a large amount of aluminium and are predicted to have a remarkable oxidation resistance at high temperatures [3]. Thus, they are expected to be candidates for use in lightweight structural materials at high temperatures in the future. MoSi₂ and WSi₂ are also intermetallic compounds with a body centred tetragonal C11_b structure and melting points of 2293 and 2437 K, respectively [1]. They are expected to be used as structural materials at temperatures up to about 1300 K. However, large single crystals of these compounds are difficult to fabricate, and the mechanical properties, such as strength and plastic deformation, have been little or never studied using single crystals for TiAl₃ [4] and ZrAl₃, respectively, although the yield strength and plastic deformation in compression

at high temperatures above 1273 K were studied for $MoSi_2$ [5, 6] and WSi_2 [6].

The elastic constants of $MoSi_2$ and WSi_2 , which were fundamental physical properties especially for the mechanical properties such as strength, plastic deformation and fracture, were reported previously [7] using single crystals with a diameter of 8 mm. In the present work, single crystals of TiAl₃ and ZrAl₃ were prepared using a floating zone method and the velocity of ultrasonic waves was measured at room temperature for single crystals with four orientations and their elastic stiffness and compliance coefficients were determined.

2. Experimental procedure

TiAl₃ and ZrAl₃ rods with a diameter of about 10 mm were arc-melted in an argon atmosphere using titanium and zirconium sheets which are arc-melted from sponge titanium (99%), sponge zirconium (99%), and aluminium sheets (99.99%) for preparation of single crystals. Single crystals with a diameter of 8 to 10 mm and a length of 20 to 60 mm of these intermetallics were fabricated using a floating zone method in an argon atmosphere with an optical heating furnace incorporating halogen lamps. The rate of movement of the floating zone was about 5 to 10 mm h⁻¹. Specimens for measurement of ultrasonic wave velocity

*Present address: National Research Institute for Metals, 2-3-12 Nakameguro, Meguro-ku, Tokyo 153, Japan

Figure 1 Crystal structures of (a) TiAl₃ and (b) ZrAl₃.

were cut from the single crystals, and the crystal orientations of the plane perpendicular to their axes were $\{001\}$, $\{100\}$, $\{110\}$, etc., as shown in Fig. 2. The single crystals were cut using an electric discharging cutting machine with a goniometer, and the thickness of the specimens for measurements of ultrasonic wave velocity was 5 to 6 mm.

The elastic constants were calculated from the velocity of ultrasonic waves, which was measured using a simple pulse echo method. The transducers with a diameter of $\frac{1}{4}$ in. (6.35 mm) were supplied by Panametrics Co., and the resonant frequencies of 10 (model V112) and 5 (model V156) MHz were used for the longitudinal and transverse waves, respectively. The pulser/receiver was a Panametrics model 5052PR, and the oscilloscope was a YHP model 1740A (100 MHz). The couplants between the specimen and transducer were spindle oil and water-soluble couplant (Sperry Co.) for longitudinal and transverse waves, respectively. The determination of wave velocity was carried out by measuring a time interval between the first peaks of the first and the second reflection waves on

Figure 2 Crystal orientations of the plane perpendicular to the axes in which the sound wave velocity was measured.

the oscilloscope, because the rising point was very difficult to detect. The average values of 13 to 25 measurements were adopted for the average sound velocity.

3. Results

TiAl₃ and ZrAl₃ have tetragonal $D0_{22}$ and $D0_{23}$ structures, respectively, and the matrix of their elastic stiffness constants is given by non-zero elements of $c_{11}, c_{33}, c_{44}, c_{66}, c_{12}$ and c_{13} because of the symmetry of their crystal structure. Their elastic compliance matrix is given by the inverse matrix of their stiffness constants.

Table I shows the ultrasonic wave velocity and the associated elastic stiffness constants for various orientations of TiAl₃ single crystal. The sound velocities were about 8000 to 8700 m sec⁻¹ for the longitudinal wave, and about 5200 to 5900 m sec⁻¹ for the transverse wave. The associated elastic stiffness constants were about 2×10^2 GPa for the longitudinal wave and about 1×10^2 GPa for the transverse wave. The standard deviations were about 0.5%. The associated elastic constant for c_{44} did not change with the crystal orientation, as seen in Table I. Here, the densities of the compounds were calculated from lattice constants [2] and atomic weights of the constituent elements. Table II shows the sound velocities and the associated elastic constants for ZrAl₃ single crystal with various orientations. The sound velocities were about 7100 to 7700 m sec^{-1} for the longitudinal wave and about 4600 to 5000 m sec⁻¹ for the transverse wave, and these values were a little lower than those of TiAl₃. The associated elastic constants were approximately equal to those of TiAl₃. The associated elastic constant from which c_{12} was obtained did not change with the thickness of the specimen. The associated elastic constant of $ZrAl_3$ corresponding to c_{44} remained constant with crystal orientation, as with TiAl₃. The elastic stiffness constants, c_{ii} , which were obtained from the values in Tables I and II, are shown in Table 3. The values of c_{11} and c_{33} were about 2×10^2 GPa, and those of c_{14} and c_{66} were about 1×10^2 GPa. These values were just a little higher for TiAl₃ than for $ZrAl_3$, and the values of c_{12} and c_{13} were the inverse. Table III also shows the elastic compliance constants, s_{ij} , which were calculated from the stiffness constants matrix, $\{c_{ii}\}$.

TABLE I The velocity of ultrasonic waves and the associated elastic constants for TiAl₃ single crystals

Orientation (plane)		Velocity (m sec $^{-1}$)		Elastic constant (10 ² GPa)		
(plane)		Average	S.D. (%)	Average	S.D. (%)	
$\overline{\langle 001 \rangle}$	lw ^a	8046	0.37	2.175 (c_{33})	0.74	
{100}	tw ^b	5237	0.23	$0.922 (c_{44})$	0.46	
{110}	tw	5233	0.19	$0.920 (c_{44})$	0.38	
<100>	lw	8046	0.28	2.177 (c_{11})	0.56	
{001}	tw	5255	0.33	$0.928 (c_{44})$	0.66	
{100}	tw	5888	0.23	1.165 (c ₆₆)	0.47	
$\langle 1 1 0 \rangle$	lw	8698	0.22	2.543 $(> c_{12}^{c})$	0.43	
Other	lw	8322	0.24	2.328 $(>c_{13}^{c})$	0.49	

^a Longitudinal wave.

^b Transverse wave.

 c_{12} or c_{13} is calculated from the associated elastic constant.

TABLE II The velocity of ultrasonic waves and the associated elastic constants for ZrAl₃ single crystals

Orientation (plana)		Velocity (m sec ^{-1})		Elastic constant (10 ² GPa)		
(plane)		Average	S.D. (%)	Average	S.D. (%)	
<001> {100}	lw ^a tw ^b	7128 4613	0.18 0.11	$\begin{array}{ccc} 2.083 & (c_{33}) \\ 0.872 & (c_{44}) \end{array}$	0.36 0.23	
<100> {001} {100}	lw tw tw	7135 4599 4994	0.12 0.22 0.14	$\begin{array}{rrrr} 2.088 & (c_{11}) \\ 0.867 & (c_{44}) \\ 1.022 & (c_{66}) \end{array}$	0.26 0.44 0.29	
<110> 6.16 mm thick <110> 5.39 mm thick	lw lw	7681 7680	0.12 0.12	2.418 $(> c_{12}^{\circ})$ 2.418 $(> c_{12}^{\circ})$	0.23 0.24	
Other	lw	7259	0.12	2.160 $(>c_{13}^{\circ})$	0.24	

^a Longitudinal wave.

^b Transverse wave.

 c_{12} or c_{13} is calculated from the associated elastic constant.

TABLE III The elastic stiffness and compliance constants for ${\rm TiAl}_3$ and ${\rm ZrAl}_3$

c _{ij}	TiAl ₃ (10 ² GPa)	ZrAl ₃ (10 ² GPa)	s _{ij}	TiAl ₃ (10 ⁻³ GPa ⁻¹)	$\frac{\text{ZrAl}_3}{(10^{-3}\text{GPa}^{-1})}$
C11	2.177	2.088	S11	5.075	5.568
C 3 3	2.175	2.083	\$33	4.939	5.235
CAA	0.920	0.872	544	10.870	11.468
C66	1.165	1.022	S66	8.584	9.785
C12	0.577	0.705	S12	-1.175	- 1.663
c ₁₃	0.455	0.491	s ₁₃	- 0.816	-0.920

4. Discussion

4.1. The orientation dependence of the compliance

The elastic constants such as Young's modulus and shear modulus are given for single crystals by the reciprocals of elastic compliance constants, s_{11} or s_{33} , and s_{44} or s_{66} . Thus, the orientation dependence of the Young's modulus and the shear modulus can be obtained from that of the compliance constants, s_{11} and s_{66} . The orientation dependence of s_{11} and s_{66} can be obtained from coordinate transformation of the compliance matrix $\{s_{ij}\}$. Fig. 3a and b show the orientation dependence of s_{11} for TiAl₃ and ZrAl₃ single crystals, where 1/E is the reciprocal of the Young's modulus which is estimated from c_{ii} and s_{ii} for isotropic materials, i.e. ideal polycrystalline materials as mentioned later. The orientation dependence of s_{11} was calculated by rotating from [100], [001] and [001] directions around [001], [100] and [110] axes, respectively. The constant c_{11} also shows a similar behaviour to that seen in Fig. 3. The value of s_{11} for the $\langle 110 \rangle$ direction, which is the close packed direction, is smaller than that for the $\langle 100 \rangle$ or $\langle 001 \rangle$ direction. This means that the Young's modulus for the $\langle 110 \rangle$ direction is the highest in both TiAl₃ and ZrAl₃. The value of s_{11} for the $\langle 021 \rangle$ direction, which is the other close packed direction, is close to that for the $\langle 001 \rangle$ direction, and this indicates that the Young's modulus changes not only with the average interatomic distance, but also the atomic arrays in the direction of the applied stress. In general, the behaviour of s_{11} is similar for TiAl₃ and ZrAl₃, but s_{11} is much higher for the $\langle 100 \rangle$ direction than for the $\langle 001 \rangle$ and $\langle 021 \rangle$ directions for ZrAl₃, compared with s_{11} for TiAl₃. This also means that the Young's modulus changes with the atomic arrays in the direction of the applied stress.

Fig. 4a and b show the orientation dependence of s_{66} for TiAl₃ and ZrAl₃ single crystals, where 1/G is the reciprocal of the shear modulus which is estimated

Figure 3 Orientation dependence of s_{11} for (a) TiAl₃, and (b) ZrAl₃ single crystals.

Figure 4 Orientation dependence of s_{66} for (a) TiAl₃, and (b) ZrAl₃ single crystals.

Figure 5 Orientation dependence of Poisson's ratio for (a) TiAl₃, and (b) ZrAl₃ single crystals, respectively, when the uniaxial stress is applied to some of the crystal orientations.

from c_{ij} and s_{ij} for isotropic materials, as mentioned later. The compliance s_{66} was calculated in various shear directions on various shear planes by coordinate transformation of the compliance matrix $\{s_{ij}\}$. The constant c_{66} also shows a similar behaviour to that seen in Fig. 4. s_{66} is generally large, especially in the [110] direction for both compounds, when the shear plane is (110). This means that both compounds show the weakest strength elastically for shear stress in the [110] direction on the $(1\overline{1}0)$ plane. It is relatively large in the $[\overline{1}10]$ direction on the $(11\overline{2})$ and $(11\overline{4})$ planes, which are close packed planes for TiAl₃ and ZrAl₃, respectively. Meanwhile, it is generally small, being smallest in the [010] direction, on the (100)plane, and this means that the shear modulus is the largest in the [010] direction on the (100) shear plane. The elastic strength is independent of the shear direction on the (001) plane. In ZrAl₃ the shear modulus is largely dependent on the shear direction on the $(1\overline{1}0)$ and $(11\overline{4})$ planes, compared with that in TiAl₃.

Poisson's ratio is given by the ratio of dilatational strain, ε_{22} , perpendicular to the applied stress direction, to dilatational strain, ε_{11} , parallel to the applied stress direction when a specimen is loaded under uniaxial stress. Thus, Poisson's ratio, v, is given by.

 $-(s_{12}/s_{22})$

or

$$-(s_{12}/s_{11}) \tag{1}$$

where s_{12} , s_{11} and s_{22} are elastic compliance constants. Fig. 5a and b show the orientation dependence of Poisson's ratio for TiAl₃ and ZrAl₃ single crystals, respectively, when the uniaxial stress is applied to some of the crystal orientations. The orientation is changed around a stressed orientation. In TiAl₃, Poisson's ratio is the lowest in the [110] direction, which is the closest packed direction of atomic arrays, when the stress is applied to the [$\overline{1}10$] direction. It is also low in the [$11\overline{2}$] direction, although it is not low in the [111] direction, which is the other closest

TABLE IV The elastic stiffness constants of various intermetallic compounds

	c_{11} (10 ² GPa)	<i>c</i> ₃₃ (10 ² GPa)	<i>c</i> ₄₄ (10²GPa)	с ₆₆ (10 ² GPa)	c_{12} (10 ² GPa)	c ₁₃ (10 ² GPa)
TiAl ₃ ZrAl ₂	2.177	2.175	0.920 0.872	1.165	0.577	0.455
Ti [8]	1.624	1.807	0.467	C ₄₄	0.920	0.690
Zr [8]	1.434	1.648	0.320	C ₄₄	0.728	0.653
Al [8]	1.082	c ₁₁	0.285	C ₄₄	0.613	c ₁₂
MoSi ₂ [7]	4.170	5.145	2.042	1.936	1.042	0.838
WSi ₂ [7]	4.428	5.523	2.116	2.175	1.217	0.810
Ni ₃ Al [9]	2.23	$c_{11} \\ c_{11} \\ c_{11}$	1.25	C ₄₄	1.48	C ₁₂
Ni ₃ Fe [9]	2.46		1.24	C ₄₄	1.48	C ₁₂
Cu ₃ Au [9]	1.87		0.68	C ₄₄	1.35	C ₁₂
NiAl [9] AgMg [9] CuZn [8] CuZn [9]	2.12. 0.84 1.279 1.29	$c_{11} \\ c_{11} \\ c_{11} \\ c_{11} \\ c_{11}$	1.12 0.48 0.822 0.82	C44 C44 C44 C44	1.43 0.56 1.091 1.10	C ₁₂ C ₁₂ C ₁₂ C ₁₂ C ₁₂
TiC [8]	5.00	$c_{11} \\ c_{11}$	1.75	C ₄₄	1.13	c ₁₂
MgO [8]	2.892		1.546	C ₄₄	0.879	c ₁₂

direction of atomic arrays. That is, elastic deformation is not easy in the [110] direction, when stress is applied in a direction perpendicular to the [110] direction. Meanwhile, it is high in the [010] direction, when the stress is applied to the [100] direction, and it remains unchanged with crystal orientation, when stress is applied to the [001] direction. Poisson's ratio for the isotropic material was calculated from the elastic constants of a single crystal, as described later. The Poisson's ratio of ZrAl₃ shows a similar behaviour to that of TiAl₃. That is, it is low in the [110] direction, which is the closest packed direction of atomic arrays, but it is not so low in the [221]direction, i.e. the other closest packed direction of atomic arrays. In both TiAl₃ and ZrAl₃, the average interatomic bonding force is expected to be strong for pulling or pushing qualitatively, when titanium or zirconium and aluminium atoms are arranged alternately in a line, compared with the case in which two types of atom are in a line of different arrangement, although the atoms are arranged in the closest packed direction. The average interatomic bonding is expected to be weak for shearing qualitatively, when two types of atom are arranged alternately in a line for the shearing direction.

The stiffness constants, c_{11} and c_{33} , are considered to be closely related to the interatomic bonding force, and then to the average interatomic distance. The ratio of the average interatomic distance in the [001] direction to that in the [100] direction is 1.117 and the ratio of c_{11} to c_{33} is 1.001 for TiAl₃. The former is 1.07 and the latter is 1.002 for ZrAl₃. These facts indicate that the elastic constants are not simply related to the average interatomic distance.

Table IV shows the elastic stiffness constants for various intermetallic compounds and elements. The stiffness constants c_{11} , c_{33} , c_{44} , and c_{66} are much higher for TiAl₃ and ZrAl₃ than for titanium, zirconium or aluminium [8] which are the constituent elements for the intermetallic compounds, and c_{12} and

 c_{13} are the inverse. These values for TiAl₃ and ZrAl₃ are half as large as those for MoSi₂ and WSi₂ reported previously [7]. The constants c_{11} , c_{33} , c_{44} , and c_{66} are approximately equal to those for Ni₃Al and NiAl [9], which are the intermetallic compounds with a cubic structure, while the constants c_{12} and c_{13} are about half the latter values, which means TiAl₃ and ZrAl₃ have lower Poisson's ratios than Ni₃Al and NiAl.

4.2. Estimation of the elastic constants for isotropic aggregates

The elastic constants, such as Young's modulus, shear modulus and Poisson's ratio, for isotropic polycrystalline materials can be estimated approximately from the stiffness constants and the compliance constants for single crystals [7, 10, 11]. The maximum values are calculated using Voigt's approximation, and the minimum values are obtained from Reuss's approximation. Hill's approximation is given by the arithmetical mean of the maximum and minimum values. Table V shows the bulk modulus, Young's modulus, shear modulus, and Poisson's ratio for ideal polycrystalline TiAl₃ and ZrAl₃, compared with those of ideal polycrystalline MoSi₂ [7] and WSi₂ [7]. The elastic constants of the constituent elements titanium, zirconium and aluminium [12] are also shown in the table. Both Young's modulus and the shear modulus for TiAl₃ and $ZrAl_3$ are half those for $MoSi_2$ and WSi_2 , and Poisson's ratio for the aluminides is a little larger. Young's modulus and the shear modulus for the aluminides are more than twice those for titanium, zirconium and aluminium, and Poisson's ratio of the aluminides is about half that of the constituent metal elements. That is, the lightweight intermetallic compounds, TiAl₃ and ZrAl₃ are expected to be materials with high specific Young's modulus (the ratio of Young's modulus to the density).

The velocity of ultrasonic waves in the isotropic material is obtained from Navier's equation using the

TABLE V The elastic constants for various polycrystalline materials

	Bulk modulus (10 ² GPa)	Young's modulus (10 ² GPa)	Shear modulus (10 ² GPa)	Poisson's ratio	Debye temperature ^d (K)
TiAl ₃ ^a	1.056	2.157	0.930	0.160	681
ZrAl ₃ ^a	1.069	2.018	0.851	0.185	577
Ti [12]	1.072	1.08	0.401	0.345	
			0.441 ^b	0.319 ^b	380 ^b
Zr [12]	0.8496	0.939	0.358	0.34	
			0.364 ^b	0.331 ^b	250 ^b
Al [12]	0.7358	0.724	0.271	0.34	
			0.265ь	0.347 ^b	214 ^b .
MoSi ^c ₂	2.097	4.397	1.911	0.151	759
WSi ^c ₂	2.224	4.679	2.036	0.149	625
TiC ^b			1.824	0.199	1370
MgO^{b}			1.33	0.166	930

^a Estimated from the elastic constants c_{ij} and s_{ij} in Table III.

^b Estimated from the elastic constants c_{ij} and s_{ij} [8].

^e Estimated from the elastic constants c_{ij} and s_{ij} [7].

^d Calculated from elastic constants at room temperature.

TABLE VI The elastic wave velocity and the Debye temperature for the polycrystalline compounds

	Wave ve	elocity (m sec	Debye	
	$\overline{v_1}$	v _t	v _m	$\begin{array}{c} - \text{temperature,} \\ \theta_{\rm D} \left({\rm K} \right) \end{array}$
TiAl ₃ ZrAl ₃	8265 7332	5260 4556	5783 5022	681 577

density, ρ_0 , the bulk modulus, *K*, and the shear modulus, *G*, shown in Table IV.

$$v_1 = [(K + 4/3 G)/\rho_0]^{1/2}$$

for the longitudinal wave (1)

 $v_{\rm s} = (G/\rho_0)^{1/2}$ for the transverse wave (2)

Then the average sound velocity, v_m , in the polycrystalline material is approximately given by [10]

$$v_{\rm m} = [1/3 (2 v_{\rm s}^{-3} + v_{\rm 1}^{-3})]^{-1/3}$$
 (3)

The Debye temperature, θ , is calculated from the average sound velocity, v_m , Planck constant, h, Boltzmann constant k, Avogadro constant, N, etc. [7, 10]. Table VI shows the sound velocities and Debye temperatures for ideal polycrystalline TiAl₃ and ZrAl₃. Debye temperatures for the constituent elements at room temperature are also shown in Table V. Debye temperatures for TiAl₃ and ZrAl₃ are much higher than those for titanium, zirconium and aluminium.

5. Conclusion

The elastic stiffness constants, c_{ij} , were obtained from the velocity of ultrasonic waves for TiAl₃ and ZrAl₃ single crystals with tetragonal D0₂₂ and D0₂₃ structures, respectively. The value of c_{11} for the $\langle 100 \rangle$ direction was approximately equal to that of c_{33} for the $\langle 001 \rangle$ direction in both TiAl₃ and ZrAl₃, and the ratio of c_{11} to c_{33} did not exactly correspond to the ratio of the average interatomic distance in the $\langle 001 \rangle$ direction to that in the $\langle 100 \rangle$ direction. The compliance constants, s_{ij} , were obtained from the inverse matrix of the stiffness constants matrix, $\{c_{ij}\}$. Young's modulus for a single crystal was the highest in the $\langle 110 \rangle$ direction in which titanium or zirconium atoms and aluminium atoms were arranged in the closest packed manner, although it was not so high in the $\langle 012 \rangle$ and $\langle 014 \rangle$ directions which showed the other closest packed array of the constituent atoms for TiAl₃ and ZrAl₃, respectively.

The elastic constants such as Young's modulus, shear modulus, and Poisson's ratio, were approximately estimated for ideal polycrystalline $TiAl_3$ and $ZrAl_3$ from the stiffness constants and compliance constants for single crystals. The Poisson's ratios of these materials were about 0.16 and 0.19 for $TiAl_3$ and $ZrAl_3$, and these values are much lower than those of ordinary metals and alloys. Debye temperatures were obtained at room temperature from the average velocity of ultrasonic waves and were 681 and 577 K for $TiAl_3$ and $ZrAl_3$, respectively.

Acknowledgements

The authors thank Drs K. Kawabe and T. Hirano for helpful discussions.

References

- T. B. MASSALSKI (ed.), "Binary Alloy Phase Diagrams", Vol. 2 (ASM, Metals Park, Ohio, 1986) pp. 1631, 2062.
- 2. P. VILLARS and L. D. CALVERT, "Pearson's Handbook of Crystallographic Data for Intermetallic Phases" (ASM, Metals Park, Ohio, 1985).
- Y. UMAKOSHI, M. YAMAGUCHI, T. SAKAGAMI and T. YAMANE, J. Mater. Sci. 24 (1989) 1599.
- 4. M. YAMAGUCHI, Y. SHIRAI and Y. UMAKOSHI, in

"Dispersion Strengthened Aluminium Alloys", edited by Y. M. Kim and W. M. Griffith (TMS, Warrendale, PA, 1988) p. 721.

- 5. Y. UMAKOSHI, T. HIRANO, T. SAKAGAMI and T. YAMANE, Scripta Metall. 23 (1989) 87.
- 6. K. KIMURA, M. NAKAMURA and T. HIRANO, J. Mater. Sci. 25 (1990) 2487.
- 7. N. NAKAMURA, S. MATSUMOTO, and T. HIRANO, *ibid.* **25** (1990) 3309.
- 8. E. NADGORNY, Prog. Mater. Sci. 31 (1988) 1.
- 9. M. H. YOO, in "High-Temperature Ordered Intermetallic Alloys II", edited by N. S. Stoloff, C. C. Kock, C. T. Liu and

O. Izumi (Materials Research Society, Pennsylvania, 1987) p. 207.

- 10. O. L. ANDERSON, J. Phys. Chem. Solids 24 (1963) 909.
- 11. R. F. S. HEARMON, Adv. Phys. 5 (1956) 323.
- C. J. SMITHELLS (ed.), "Metals Reference Book", 5th Edn (Butterworths, London, Boston, 1976) p. 975.

Received 20 February and accepted 9 March 1990